

Session: 092917

Date: Thurs., Sept. 29, 2016

Time: 2:00 pm - 3:00 pm

Positive Impact of Insulated Concrete Forms: Sustainable, Economical, Efficient

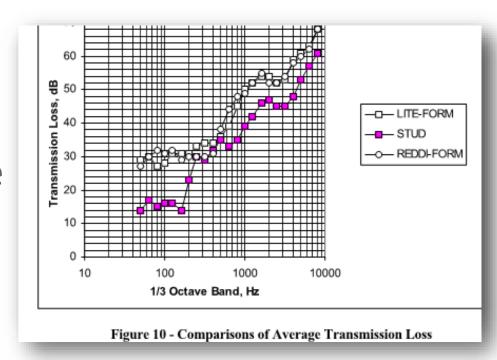
Presented by:

- John H. Russell, Sr. Director of Project Administration, Texas Tech University System
- Denise A. Hostick, IIDA, Sr. Construction Project Manager, Texas Tech University System
- Luke Vaden, Senior Project Manager, Vaughn Construction

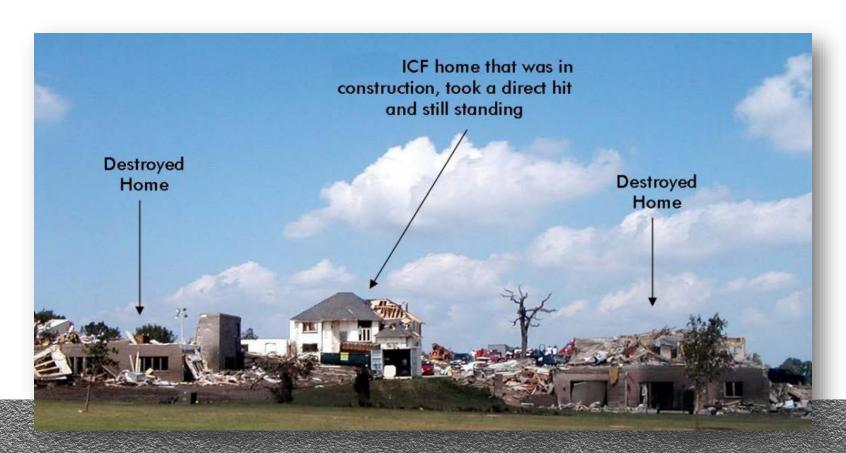
This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services may be addressed at the conclusion of this presentation.

Introduction

- Goal: Explore Innovative Building Systems to:
 - Cut building costs
 - Increase speed to market
 - Support eco-friendly technology
- Result: Insulated Concrete Forms for Institutional Construction
 - Administration Building
 - West Village Residence Hall


Agenda

- Project Design Considerations
- Metrics: Up Front Savings and Life Cycle Cost
- Challenges of Using ICF on Institutional Projects


Project Design Considerations

Acoustics

- Located at a Freeway and Major Street
- Significant Traffic Noise
- Numerous Windows
- Board of Regent Meetings

Safety of Occupants

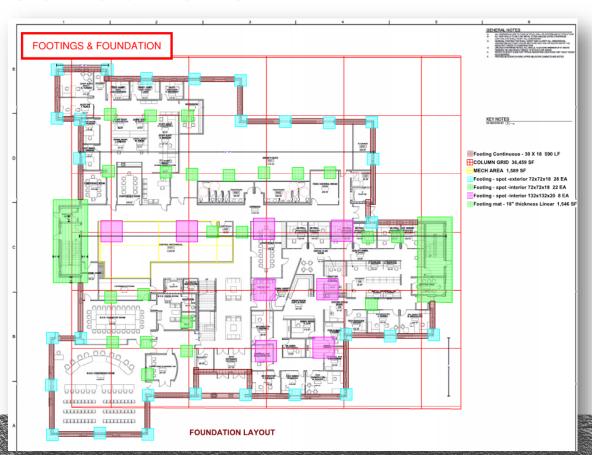
DAS for Cellular Service

- Rebar and Concrete in the Exterior Walls
- Low E Glass
- Structural Steel Floors and Roof

Metrics: Up Front Savings and Life Cycle Cost

Cost of Construction

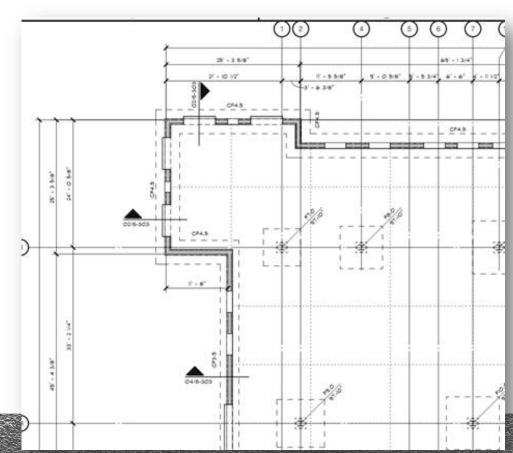
Option	Structural Framing Options	Cost/SF (Gross)	Estimated Project Cost			
1.a	6" ICF with 10" Hollow Core Plank (1 Corridor)***	\$27.09	\$5,825,246			
1.b	6" ICF with 8" Hollow Core Plank (2 Corridor Walls)***	\$28.05	\$6,030,143			
1.c	SMS with 10" Hollow Core Plank (1 Corridor)	\$22.68	\$4,877,200			
1.d	SMS with 8" Hollow Core Plank (2 Corridor Walls)	\$23.00	\$4,944,260			
2. a	SMS with Hambro (1 Corridor)	\$26.35	\$5,664,698			
2.b	SMS with Hambro (2 Corridor Walls)	\$27.28	\$5,866,061			
2.c	6" ICF with Hambro (1 Corridor)***	\$29.04	\$6,242,647			
2.d	6" ICF with Hambro (2 Corridor Walls)***	\$30.64	\$6,585,805			


Scopes of Work and Dollars Affected

- Foundations
- Steel Structure Reduction
- Exterior Wall Changes
- Cooling Load Reduction
- Schedule Reduction

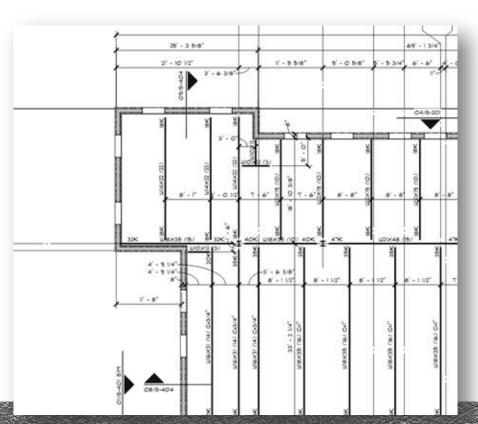
Foundations

Conventional Structural Steel Building


- Spot footings
- Grade beams
- Mat footings

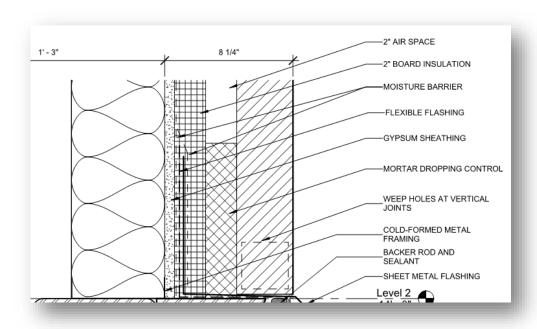
Foundations

ICF Structure


- Continuous footings
- Spot footings on interior only
- More CY of concrete
- More efficient installation

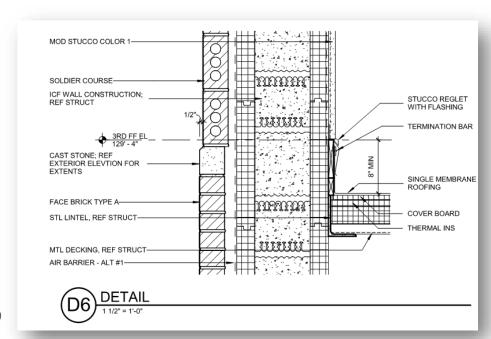
Structural Steel Reduction

ICF


- Reduction of perimeter steel
- Removal of moment connections

Exterior Wall Changes

Typical Exterior Wall


- Ext drywall partitions
 - 6" metal stud
 - Exterior sheathing
 - Batt insulation
- Damp-proofing
- Rigid board insulation

Exterior Wall Changes

ICF Exterior Wall

- Delete exterior drywall partitions
- Dampproofing?
- Delete rigid board insulation
- Add interior furr out?

Cooling Load Reduction

ICF Impact on Cooling Load

- Reduce amount of air leakage
- Better insulation at exterior walls
- Load reduction at TTU
 System Office Building: 15
 tons of HVAC capacity

Up Front Savings at TTU System Office Bldg

	Qty	Unit	\$ / Unit	Total
ICF System				
Foundation	188	CY	\$ 800	\$ 150,400
Steel Embed Allowance	1	L\$	\$ 30,000	\$ 30,000
ICF (insulation, concrete, rebar, formwork) - Includes 1'-8" below grade	44,281	SF	\$ 19.50	\$ 863,480
Fluid Applied Membrane Air Barrier (includes cleaning polystyrene)	32,815	SF	\$ 5.20	\$ 170,638
Drywall interior side	2,545	LF	\$ 16.00	\$ 40,720
*VRF System	235	TONS	\$ 7,000	\$ 1,645,000
Schedule Reduction	(3)	WKS	\$ 15,500	\$ (46,500)
Subtotal				\$ 2,853,738
Conventional Structural Steel System				
Foundation	153	CY	\$ 972	\$ 148,716
Steel (columns & bracing)	120	TONS	\$ 4,200	\$ 504,000
Steel rigid moment connections	162	EA	\$ 600	\$ 97,200
Exterior Drywall Partition (includes thermal insulation)	2,545	LF	\$ 98.00	\$ 249,410
Parapet framing	640	LF	\$ 32.00	\$ 20,480
Rigid Insulation	2,545	LF	\$ 22.00	\$ 55,990
Fluid Applied Membrane Air Barrier	32,815	SF	\$ 4.50	\$ 147,668
*VRF System	250	TONS	\$ 7,000	\$ 1,750,000
Subtotal				\$ 2,973,464
ICF System Total				\$ 2,853,738
Conventional Structural Steel System Total				\$ 2,973,464
Deduct for ICF System				\$ (119,726)

ICF \$2,853,738 <u>Steel</u> \$2,973,464 Savings \$119,726

3 Week Schedule Reduction

Life Cycle Cost at West Village

- ICF Efficiencies Reduce HVAC Tonnage 30-40%
- Savings Equate to \$430,000 or \$1.83/SF
- Estimated Energy
 Savings of \$156,180*
 - *Not including VRF savings

Reduce Work Activities = Potential Schedule Reduction

South	74	14-Apr-16	28-Jul-16	28-Jul-
Exterior Studs- South	15	14-Apr-16	04-May-16	Exterior Studs - South
Sheathing - South	6	29-Apr-16	06-May-16	Sheathing - South
Damproofing / Flashing - South	10	04-May-16	17-May-16	Damproofing / Flashin
Glazing - South	6	06-May-16	13-May-16	Glazing - South
Curtian Wall - South	10	18-May-16	01-Jun-16	Currian Wall - Sout

20	015		2016						2017								
Jun	Jul Aug Sep	Oct Nov Dec	Jan Feb Mar	Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
		🙎 Founds	tion Start														
		🙎 F0	UNDATION CO	√∳LET8	Ē												
		•	•	🛓 TOR	OUT												
			•	I Exte	erior Glass S	: itart											
				Ī		Y-IN											
					•	•	. AIR	ON									
				1			•					<u>.</u>	SHB	STANI	FIAL C	OMPLE	: TION

Schedule Considerations

- Building Layout
- Coordination With Other Trades
- Windows/Embeds and Block Outs

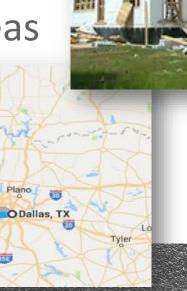
Challenges of Using ICF on an Institutional Project

Challenge: Limited Subcontractor Availability

Mostly Residential

Plainview

Big Spring


Lubbock, TX @

Andrews

Clovis

Hobbs

Most Subcontractors
 Located in Larger Metro Areas

Solution: Focus on Select Subcontractors

1. Utilize ICF Block Suppliers

- NurDura
- FoxBlocks
- 2. Utilize Design Professional Accustomed to ICF

3. Make Project Attractive

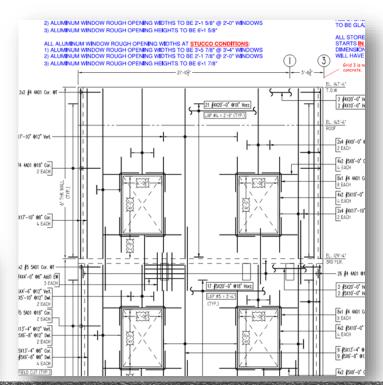
- Good detailing
- Quality specifications
- Appropriate schedule

Question:

Drawing A-602 provides a masonry opening of 23'-10 7/8" for the horizontal portion of storefront AL15. However, drawing S-102 indicates an inside face of foam to inside face of foam dimension of the stair wells to be 23'-6 7/8". Due to the storefront masonry opening dimension being greater than the inside dimension of the stairwells, please provide a specific jamb detail of the storefront condition interfacing with the ICF walls at these locations. Additionally, drawing A-602 indicates detail C3/A-502.1 for the jamb condition of storefront AL15. Please confirm detail C3 on A-502.1 is to be a cut through the vertical window of AL15 as shown on A-602.

Challenge: Delivering Institutional Quality

- Subcontractors Not
 Accustomed to
 Delivering Quality Level
- Difficulty Increases with Building Height
- Openings + Embeds = Honeycombs



Solution: Buy/Specify ICF Systems

- Pre-formed Shapes
- Require Shop Drawings
- Alignment Systems
- ICF Outrigger Brackets

Solution: Plan Ahead/Problem Areas

- Conduct Preconstruction with Supplier, Installer and Design Professional
- Increase Window Buck Reinforcement
- Reduce Aggregate Size
- Leave Out Window Bucks at Sills

Solution: Plan Ahead/Problem Areas

- Horizontal Stiff Backs on Outside
- Plumb Walls & Corners
 Before & During Placement
- Post Pour Honeycomb Checks at Embeds
- Identify Problem Areas After Placement / Learn From Mistakes

Challenge: Safety

- Lack of Knowledge of Institutional Expectations
- Introduction of Multiple Stories

Solution: Plan Ahead

- Help ICF Sub Plan Ahead
- Utilize ICF Outrigger Systems
- Expand on Existing Knowledge
- Specify/Buy Engineered
 Systems
- Plan for Leading Edge/Gaps in Protection

Conclusion: Key Benefits of ICF

- ✓ Cost Savings
- ✓ Schedule Reduction
- ✓ Eco-Friendly
- ✓ Utility Savings
- √ Safe Shelter

Seminar Evaluation

We hope you enjoyed this session...

Please take a moment to complete the evaluation form.

Thank you!

