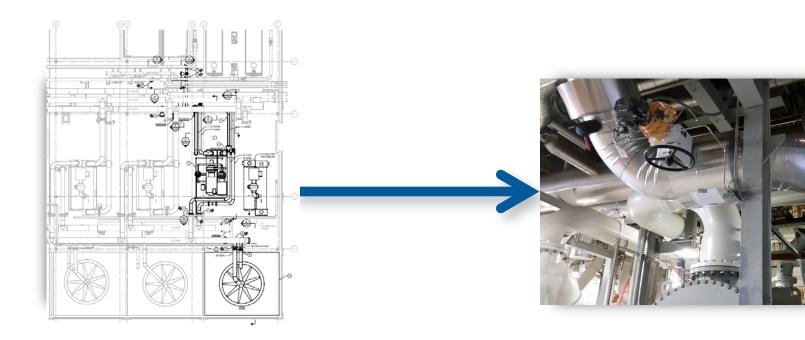
CAMPUS MASTER PLANNING

FROM DESIGN TO IMPLEMENTATION

Session: 100214

Date: Thursday, October 2, 2014

Time: 3:15 pm – 4:15 pm



Campus Master Planning

From Design to Implementation

David Payne, Texas A&M
University

Associate Director for Utilities & Energy Services

Justin Grissom, PE
Project Manager
BMcD *On*Site Energy & Power

Campus Master Planning

From Design to Implementation

Campus Master Planning

From Design to Implementation

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services may be addressed at the conclusion of this presentation.

Texas A&M Overview

Initiating the Plan

Utilities & Energy Master Plan Results

Implementing the Plan/Case Studies

Making Sure the Plan Works

Key Takeaways

Campus Master Planning -

Overview of Texas A&M University

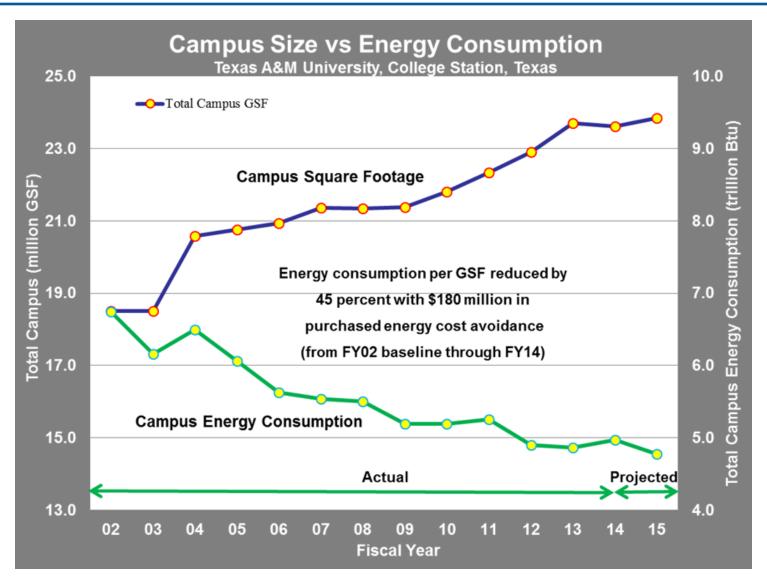
- State's first public institution of higher education, was opened on Oct. 4, 1876 as the Agricultural and Mechanical College of Texas
- Total undergraduate/graduate enrollment is over 56,000
- Holds a rare federal land, sea, space grant university designation
- TAMU is a Tier 1 research university with total research expenditures exceeding \$820 million
- Campus size is over 5,500 acres, more than 500 acres for the main campus in College Station, TX

Campus Master Planning .

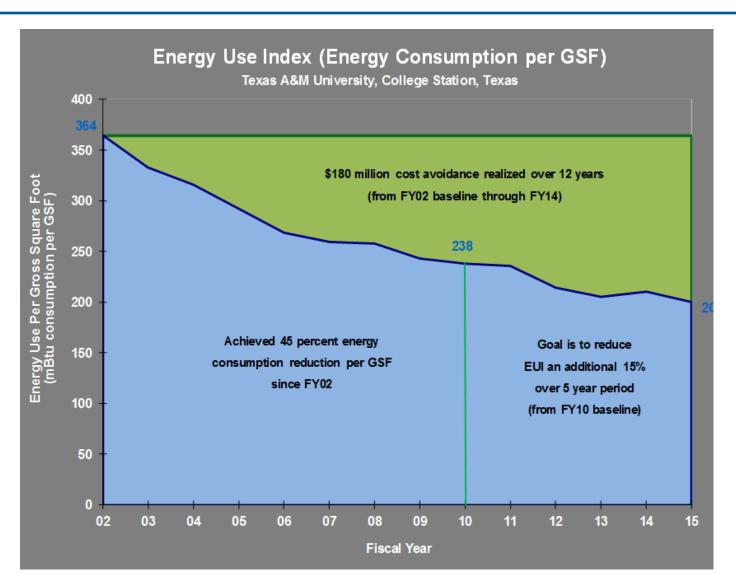
Overview of Utilities and Energy Services (UES)

- The university utility systems have operated with on-site power generation since 1893
- Extensive network of electrical distribution and central thermal energy production and distribution for cooling and heating to meet university requirements for over 800 buildings totaling over 24M GSF (19M conditioned)
- UES offers a highly reliable and cost-effective range of mission-critical services for over 60,000 customers consisting of students, faculty, staff, and visitors on campus

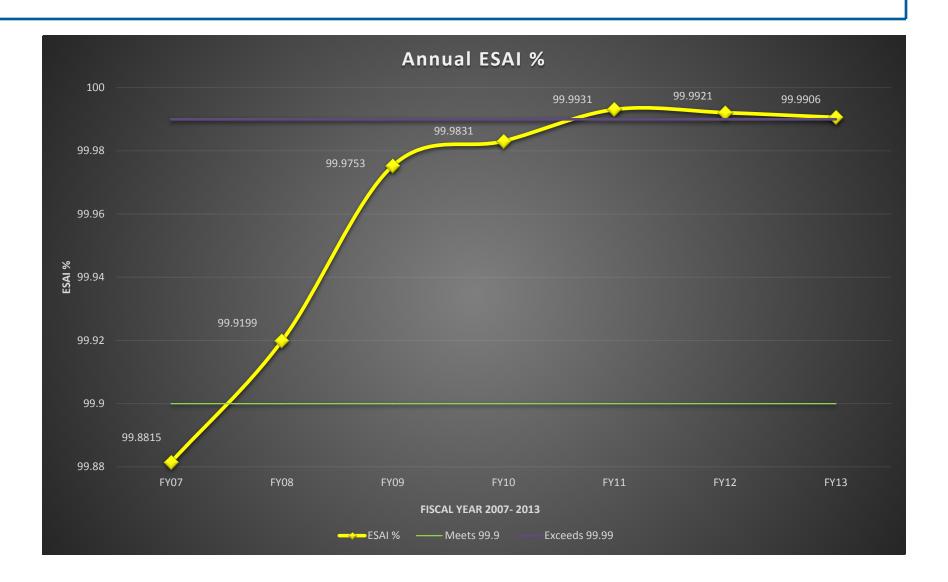
Texas A&M University Energy Services Continuum


PROCUREMENT	TRANSMISSION	PRODUCTION	DISTRIBUTION	METERING & BILLING	DEMAND-SIDE MANAGEMENT
Calculate and nominate campus energy requirements Specify annual and monthly consumption of electricity and natural gas Review and recommend payment of energy invoices Serve on TAMU energy risk management committee	 TAMU owns: Domestic water transmission system Atmos owns: HP (600 psi) NG delivery system ERCOT/BTU owns: 138kV electrical transmission system UES coordinates closely with Atmos and ERCOT/BTU 	 Management of: Four campus utility plants System Building utility plant Solid Waste & Recycling 2 wastewater treatment facilities Production of: Electricity Chilled water for cooling Hot water for heating Domestic cold & hot water Steam 	TAMU owns campus delivery systems: • 12.5kV electrical • Domestic water (hot & cold) • Chilled Water • Heating Hot Water • Steam • Sanitary Sewer • Storm Drainage Atmos owns: • LP & IP natural gas delivery system	Over 2,000 revenue-quality meters in over 500 buildings Manage utility rate model and rate setting Cost recovery for all utilities and energy – both operating budget and purchased energy Direct customer Invoicing through FAMIS Energy efficiency improvement services	First response to ensure customer comfort Building automation and HVAC regulation Energy stewardship & building system optimization Design review and capital project coordination Customer requests thru AggieWorks Center Key performance indicators and resource management

Texas A&M University Divergent Energy w/GSF



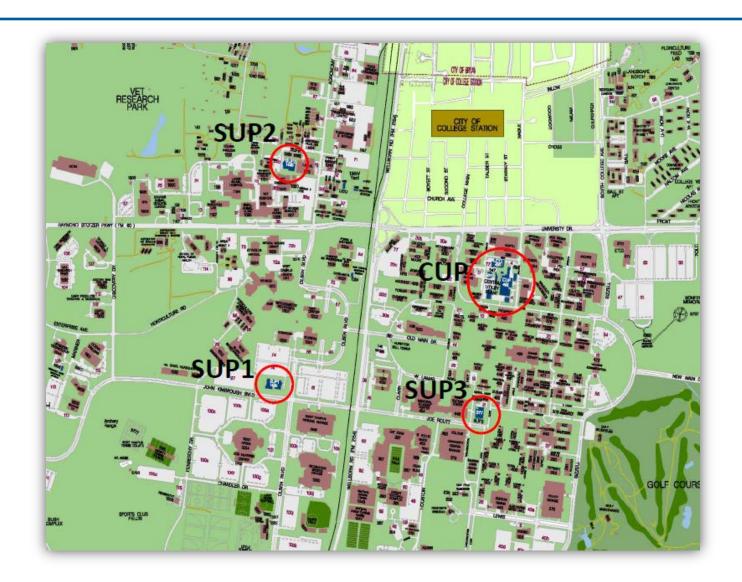
Texas A&M University Energy Use Index Chart



Annual Electrical Service Availability (ESAI)

Texas A&M University Overview

• Utilities Divided – Main and West Campuses


- (4) Utility Plants
- 54,000 ton cooling (steam & elec)
- 440,000 pph steam
- 451,000 Mbtu/h heating hot water
- 50 MW power gen capacity
 - 34 MW gas turbine
 - 16 MW two steam turbines

Texas A&M University Overview

Initiating The Plan Getting Buy-In

Internal Challenges

- "Didn't we just do this?"
- Tight Budgets
- Agreement between departments

Secrets to Success

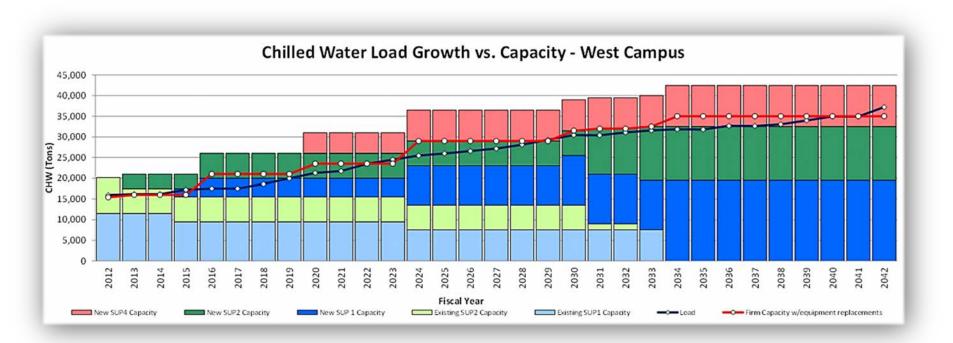
- Show changes driven by others
 - Updated architectural master plan / vision
 - Utility market changes
 - New environmental targets
- Show value focus on \$\$
 - Previous master plan contributed in saving \$140 million, improved reliability, etc.
 - TAMU 40% energy reduction per GSF, \$140 MM saved
 - Time is now to be proactive
 - Being reactive later wastes capital and operations \$
 - Delayed savings are LOST savings

Texas A&M University Growth

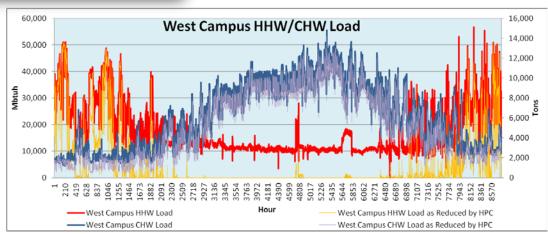
	2012	Year 5	Year 30	Avg Growth/Yr
Area	22,500,000 SF	24,600,000 (9%)	35,200,000 (56%)	1.5%
CHW Peak	37,600 tons	41,500 (10%)	64,000 (70%)	1.7%
Heating HW	222 MMBtuh	242 (9%)	372 (68%)	1.6%
Dom HW	295 gpm	324 (10%)	581 (97%)	2.2%
Electricity	70 MW	80 (14.3%)	100 (43%)	1.4%

- Long Term Growth is Huge
 - But moderate year over year
- Mix of Building Types has Dramatic Impact
- Need Architectural Master Plan to Be Most Effective
- Focus on Energy Efficiency to Reduce Demand
 - Today ≠ Tomorrow

Utilities & Energy MP Results -

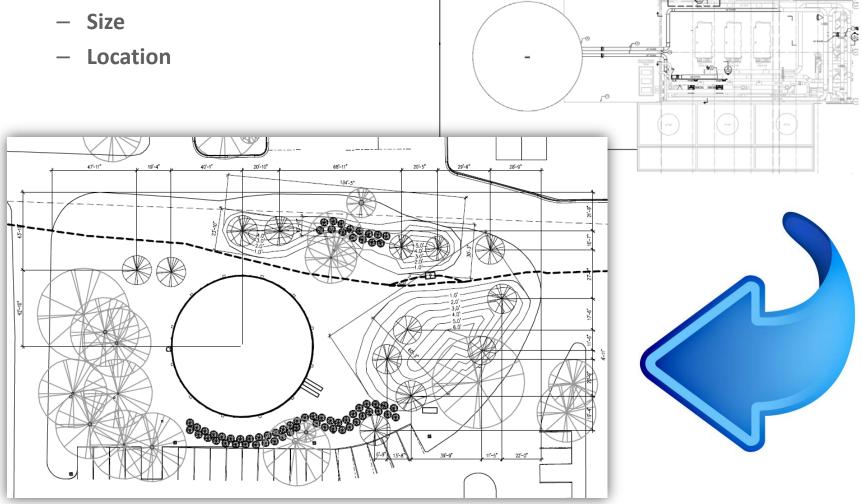

- \$45M in capital projects through 2016
 - \$31M in replacement & capacity projects
 - \$1.9M in annual savings
- \$135M through 2042
 - \$32.9M in Life Cycle Savings
- Expansions and Replacements Planned
- New Thermal Plant Planned for 2020

Utilities & Energy MP Results -

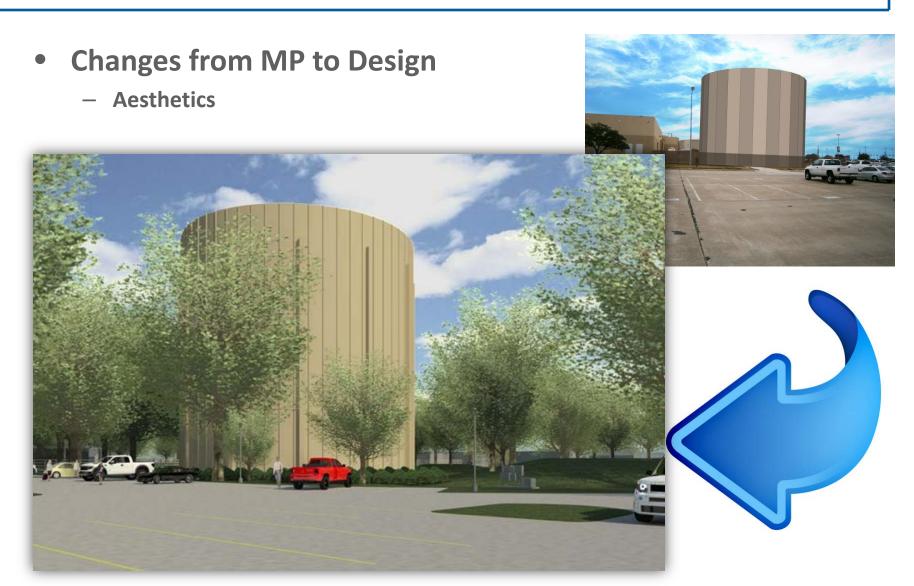


Utilities & Energy MP System Enhancements

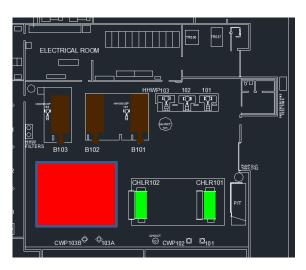
- Thermal Energy Storage
- Heat Recovery Chiller
- Chilled Water Plant Optimization
- Provide Significant Utility Cost Flexibility
 - Texas Grid Cap \$4.5/kWh in 2012
 - \$5/kWh in 2014
 - \$9/kWh in 2015
- Hold Up to Sensitivity Analysis

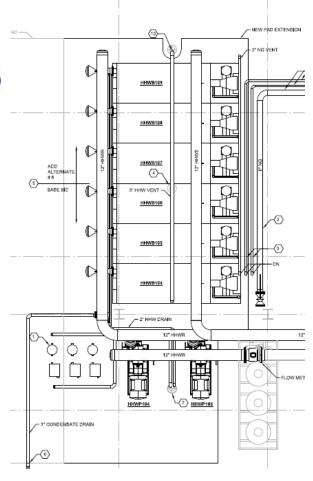


Utilities & Energy MP Case Study- TES



Utilities & Energy MP Case Study - TES -





Utilities & Energy MP Case Study – Boiler Upgrade

- Changes from MP to Design
 - Three boilers planned at ultimate build out
 - Six boilers installed due to changing loads

Long Term Plan Impact Key Interests

Distribution Planning

- Biggest disruption on campus
- Plan to do it once
- Be conservative with sizing

Future Plant Locations

- Improves distribution
- Try to "save" the space for utilities

New or Enhanced Technologies will be Available

- Don't focus too much on analyzing new efficiency projects 20 to 30 years out
- Too many variables in play

Utilities & Energy MP Additional Initiatives -

2021 EUI Target – 140 mBtu / GSF – entire campus

Building Prioritization Categories

- Energy Reduction Capital Projects
- Retro-Commissioning
- Planned Renovation Projects
- Energy Efficient Building

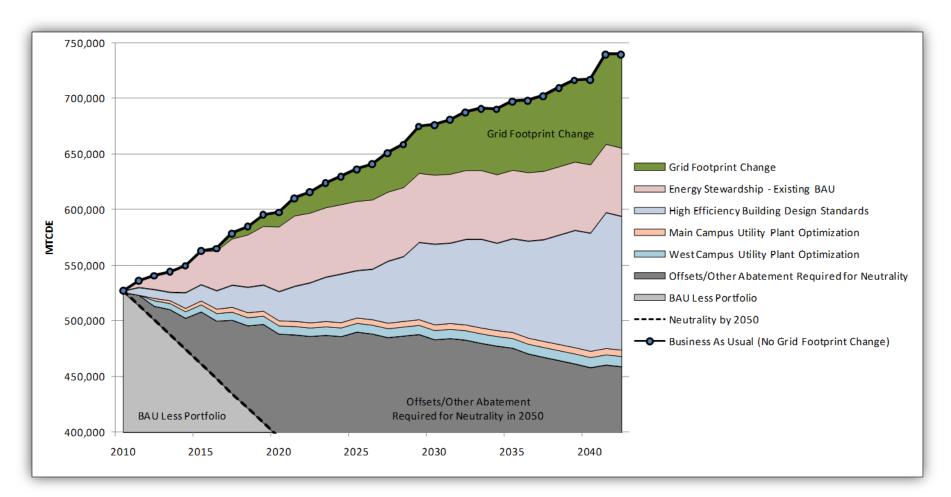
EUI Target Establishment for New Buildings

- By Building Category
- Stretch Goals not impossible goals
- Dramatic Impact \$\$\$ and GHG Emissions
- Hold Building Designers Accountable

OF	PPORTUNITY FOR ENERGY REDUCTION			
09721	LABORATORY ANIMAL CARE BUILDING			
1041 ²	TEXAS VET MED DIAGNOSTIC LAB			
11841	BIO WASTE MANAGEMENT FACILITY			
1513 ¹	BORLAUG CENTER			
1810¹	OFFICE OF THE STATE CHEMIST			
RETROCOMISSIONING				
0516 ¹	COMPUTING SERVICES CENTER			
04341	LUEDECKE BUILDING (CYCLOTRON)			
1507 ¹	BIOCHEMISTRY/BIOPHYSICS BUILDING			
03861,2	JACK E. BROWN CHEM ENGINEER			
0513 ¹	DOHERTY BUILDING			
NEAR TERM CAPITAL PROJECTS PLANNED				
03761,2	CHEMISTRY BUILDING ADDITION			
04841,2	CHEMISTRY BUILDING			
1194¹	VETERINARY LARGE ANIMAL HOSPITAL			
0740¹	MCNEW LABORATORY			
0456	MILITARY SCIENCES BUILDING			
	ENERGY EFFICIENT BUILDINGS			
0404	GAINER HALL - DORM 5			
0407	HARRELL HALL - DORM 8			
0414	CROCKER RESIDENCE HALL			
0411	UTAY HALL - DORM 12			
0401	KIEST HALL - DORM 2			

Utilities & Energy MP Design Guidelines -

- Design Guidelines Formally Capture Campus Goals
 - New Construction and Major Building Renovations
- Guidelines are a Communication Tool
- Quality Guidelines Provide:
 - Lower Energy Consumption and Cost
 - Lower Maintenance Cost
 - Consistency, Reliability
- Set Modeling Approach for New Building Design
- Define What You Want or There's No Way You'll Get It!



Utilities & Energy MP Master Plan Results

Greenhouse Gas Reduction – "Wedge Analysis"

Utilities & Energy MP On To Design/Construction

Maximize capital project scope against budgets

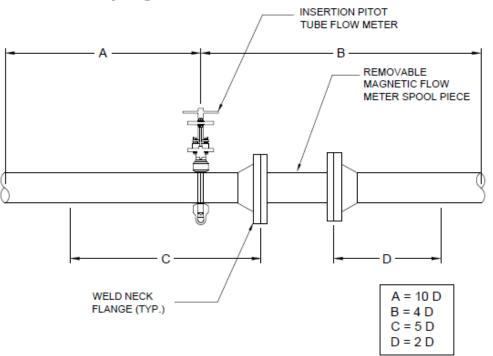
- Appropriately Conservative Estimates
- Consider bid alts to improve economics/flexibility

Early Discussion of Operational Nuances

- Flow meter needs and locations
- VFD (with or without bypasses)
- Manufacturer (standardized or variety of equipment)

Minor Capital Project Wish List

- Relocation of items
- Clean up of previous issues
- Part of bid alts



Utilities & Energy MP Case Study – Flow Metering

Changes from MP to Design

- Magnetic vs. Insertion Pitot Tube
- Piping modifications for future installation

Implementing The Plan So Now What Do I Do?

Pre-Sell

- Stay in front of the key people
- Provide updates
- Continually remind them of the "Whys" and "Benefits"

Understand What Each Individual Cares About

- Yes, you are trying to make everyone happy
- Capital, Energy, or O&M Savings
- Reliability
- Emissions
- Aesthetics
- This is SALES! Make Others Feel and Look Good

Implementing The Plan So Now What Do I Do?

"Architectural master plan is changing"

It always will! We plan as best we can and adjust as needed. Doing nothing and hoping is not an option.

"What about other new technologies coming out?"

Our plan is flexible. We do what we need to do now and allow for review and enhancements as technologies become tried and true. Reliability is key. We want leading edge, not bleeding edge.

"We don't have the money"

Our plan is the most cost effective approach. Any other way costs more both short and long term. We're an institution – we're not going anywhere.

Implementing The Plan So Now What Do I Do?

- Emphasize Impact of "Business as Usual"
- Utility system not ready for new loads
 - Reactive vs. proactive implementation
 - Undersized piping (dig it up and replace later)
 - Local building chillers and boilers
 - Lack of redundancy / reliability
 - Etc, etc, etc.
 - Doing Nothing is 'Doomsday Scenario'

Additional Efforts

- Energy Management Program
 - Texas A&M System-wide Program
- Sharing Experiences, Lessons Learned, & Successes
- Helping Create Focus and Targets
 - Can't just be business as usual
- "You Can't Handle the Truth"
 - 'Twilight Tours' of buildings
 - Documentation and reporting
 - Establish EUIs and ECIs
 - Multi-phase approach

- ★ Be Proactive Growth will Happen; Be Ready
- **→** Plan for Future Efficiency Improvement
- Know Your Goals LCC, Energy,
 Emissions, Reliability
- Design Guidelines, Metering, Specific Targets
- ★ Sell, Sell If you don't, no one will
- → Be Ready for the No's Have a 'Plan B'

What You Are Doing is Important and Impacts

Your Campus, Your Region, Our World

CAMPUS MASTER PLANNING FROM DESIGN TO IMPLEMENTATION

David Payne, Texas A&M
University
Associate Director for Utilities
& Energy Services

Justin Grissom, PE
Project Manager
BMcD *On*Site Energy & Power

Seminar Evaluation

We hope you enjoyed this session – Please take a moment to complete the evaluation form.

Thank You!

Thank You -

